当前位置: 首页 > 雅思阅读原文翻译 > 正文

剑桥雅思18Test1Passsage3阅读原文翻译 Conquering Earth’s spa […]


剑桥雅思18Test1Passsage3阅读原文翻译 Conquering Earth’s space junk problem 解决地球的太空垃圾问题


剑桥雅思18 Test1 Passage3阅读原文翻译



Last year, commercial companies, military and civil departments and amateurs sent more than 400 satellites into orbit, over four times the yearly average in the previous decade. Numbers could rise even more sharply if leading space companies follow through on plans to deploy hundreds to thousands of large constellations of satellites to space in the next few years.


All that traffic can lead to disaster. Ten years ago, a US commercial Iridium satellite smashed into an inactive Russian communications satellite called Cosmos-2251, creating thousands of new pieces of space shrapnel that now threaten other satellites in low Earth orbit – the zone stretching up to 2,000 kilometres in altitude. Altogether, there are roughly 20,000 human-made objects in orbit, from working satellites to small rocket pieces. And satellite operators can’t steer away from every potential crash, because each move consumes time and fuel that could otherwise be used for the spacecraft’s main job.



Concern about space junk goes back to the beginning of the satellite era, but the number of objects in orbit is rising so rapidly that researchers are investigating new ways of attacking the problem. Several teams are trying to improve methods of assessing what is in orbit, so that satellite operators can work more efficiently in ever-more-crowded space. Some researchers are now starting to compile a massive data set that includes the best possible information on where everything is in orbit. Others are developing taxonomies of space debris – working on measuring properties such as the shape and size of an object, so that satellite operators know how much to worry about what’s coming their way.


The alternative, many say, is unthinkable. Just a few uncontrolled space crashes could generate enough debris to set off a runaway cascade of fragments, rendering near-Earth space unusable.’If we go on like this, we will reach a point of no return,’ says Carolin Frueh, an astrodynamical researcher at Purdue University in WestLafayette, Indiana.

许多人认为,另一种情况是不可想象的。只要发生几次失控的太空碰撞,就能够产生足够的碎片,引发连锁反应,使近地空间变得无法使用。“如果继续这样下去,我们将到达一个无法回头的点,”印第安纳州西拉斐特的普渡大学天体动力学研究员Carolin Frueh表示。


Even as our ability to monitor space objects increases, so too does the total number of items in orbit. That means companies, governments and other players in space are collaborating in new ways to avoid a shared threat. International groups such as the Inter-Agency Space Debris Coordination Committee have developed guidelines on space sustainability. Those include inactivating satellites at the end of their useful life by venting pressurized materials or leftover fuel that might lead to explosions. The intergovernmental groups also advise lowering satellites deep enough into the atmosphere that they will burn up or disintegrate within 25 years. But so far, only about half of all missions have abided by this 25-year goal, says Holger Krag, head of the European Space Agency’s space-debris office in Darmstadt, Germany. Operators of the planned large constellations of satellites say they will be responsible stewards in their enterprises in space, but Krag worries that problems could increase, despite their best intentions.’What happens to those that fail or go bankrupt?’ he asks.’They are probably not going to spend money to remove their satellites from space.’

随着我们监测太空物体的能力的增强,轨道上物体的总数也在增加。这意味着公司、政府和太空活动的其他参与者正在以新的方式合作,以避免共同面临的威胁。像国际太空碎片协调委员会这样的国际组织已经制定了太空可持续性发展指南。其中包括在卫星使用寿命结束时通过释放压力材料或剩余燃料来终止卫星,以防止发生爆炸。这些政府间组织还建议将卫星降低到大气层深处,在25年内燃烧或分解掉。但是,位于德国达姆施塔特的欧洲航天局的太空碎片办公室主任Holger Krag表示,到目前为止,只有约一半的卫星符合该25年目标。有计划发射大型卫星群的运营商表示,他们将在太空企业中扮演负责任的管理者角色。但Krag担心,尽管他们抱着最好的意图,但问题可能会恶化。“那些失败或破产的企业会怎样?”他问道。“他们可能不会花钱将卫星从太空中移除出去。”


In theory, given the vastness of space, satellite operators should have plenty of room for all these missions to fly safely without ever nearing another object. So some scientists are tackling the problem of space junk by trying to find out where all the debris is to a high degree of precision. That would alleviate the need for many of the unnecessary maneuvers that are carried out to avoid potential collisions.’If you knew precisely where everything was, you would almost never have a problem,’ says Marlon Sorge, a space-debris specialist at the Aerospace Corporation in El Segundo, California.

从理论上讲,考虑到太空的广袤,卫星运营商应该有足够的空间让所有这些卫星安全地飞行,而不会接近其他物体。因此,一些科学家正在尝试通过精准定位所有碎片来解决太空垃圾问题。这将减少许多避免潜在碰撞而进行的不必要的机动操作。“如果你准确的知道所有东西的位置,那么几乎就永远不会有问题,”位于加利福尼亚州埃尔塞贡多的航天公司的太空碎片专家Marlon Sorge表示。


The field is called space traffic management, because it’s similar to managing traffic on the roads or in the air. Think about a busy day at an airport, says Moriba Jah, an astrodynamicist at the University of Texas at Austin: planes line up in the sky, this article is from laokaoya website, landing and taking off close to one another in a carefully choreographed routine. Air-traffic controllers know the location of the planes down to one metre in accuracy. The same can’t be said for space debris. Not all objects in orbit are known, and even those included in databases are not tracked consistently.

这个领域被称为太空交通管理,因为它类似于管理道路或空中交通。想象一下机场繁忙的一天,德克萨斯大学奥斯汀分校的天体动力学家Moriba Jah说道:飞机在天空中排队,按照精心编排的次序紧挨着彼此起降。空中交通管制员准确地了解飞机的位置,精度可达一米。但对于太空碎片来说,情况并非如此。并非所有轨道上的物体都是已知的,即使包含在数据库中的物体也没有得到持续跟踪。


An additional problem is that there is no authoritative catalogue that accurately lists the orbits of all known space debris. Jah illustrates this with a web-based database that he has developed. It draws on several sources, such as catalogues maintained by the US and Russian governments, to visualise where objects are in space. When he types in an identifier for a particular space object, the database draws a purple line to designate its orbit. Only this doesn’t quite work for a number of objects, such as a Russian rocket body designated in the database as object number 32280. When Jah enters that number, the database draws two purple lines: the US and Russian sources contain two completely different orbits for the same object. Jah says that it is almost impossible to tell which is correct, unless a third source of information made it possible to cross-correlate.


Jah describes himself as a space environmentalist:’I want to make space a place that is safe to operate, that is free and useful for generations to come.’Until that happens, he argues, the space community will continue devolving into a tragedy in which all spaceflight operators are polluting a common resource.


老烤鸭雅思口语课程请联系小助手微信号:laokaoyaielts 老烤鸭雅思公众号
本文固定链接: http://www.laokaoya.com/56292.html | 老烤鸭雅思-专注雅思备考

剑桥雅思18Test1Passsage3阅读原文翻译 Conquering Earth’s space junk problem:等您坐沙发呢!


error: Alert: Content is protected !!